Today.Az » Weird / Interesting » Power from the air: Device captures ambient electromagnetic energy to drive small electronic devices
11 July 2011 [12:16] - Today.Az
Researchers have discovered a way to capture and harness energy transmitted by such sources as radio and television transmitters, cell phone networks and satellite communications systems. By scavenging this ambient energy from the air around us, the technique could provide a new way to power networks of wireless sensors, microprocessors and communications chips.
"There is a large amount of electromagnetic energy all around us, but
nobody has been able to tap into it," said Manos Tentzeris, a professor
in the Georgia Tech School of Electrical and Computer Engineering who
is leading the research. "We are using an ultra-wideband antenna that
lets us exploit a variety of signals in different frequency ranges,
giving us greatly increased power-gathering capability."
Tentzeris and his team are using inkjet printers to combine sensors,
antennas and energy scavenging capabilities on paper or flexible
polymers. The resulting self powered wireless sensors could be used for
chemical, biological, heat and stress sensing for defense and industry;
radio frequency identification (RFID) tagging for manufacturing and
shipping, and monitoring tasks in many fields including communications
and power usage.
A presentation on this energy scavenging technology was given July 6
at the IEEE Antennas and Propagation Symposium in Spokane, Wash. The
discovery is based on research supported by multiple sponsors, including
the National Science Foundation, the Federal Highway Administration and
Japan's New Energy and Industrial Technology Development Organization
(NEDO).
Communications devices transmit energy in many different frequency
ranges, or bands. The team's scavenging devices can capture this energy,
convert it from AC to DC, and then store it in capacitors and
batteries. The scavenging technology can take advantage presently of
frequencies from FM radio to radar, a range spanning 100 megahertz (MHz)
to 15 gigahertz (GHz) or higher.
Scavenging experiments utilizing TV bands have already yielded power
amounting to hundreds of microwatts, and multi-band systems are expected
to generate one milliwatt or more. That amount of power is enough to
operate many small electronic devices, including a variety of sensors
and microprocessors.
And by combining energy scavenging technology with supercapacitors
and cycled operation, the Georgia Tech team expects to power devices
requiring above 50 milliwatts. In this approach, energy builds up in a
battery-like supercapacitor and is utilized when the required power
level is reached.
The researchers have already successfully operated a temperature
sensor using electromagnetic energy captured from a television station
that was half a kilometer distant. They are preparing another
demonstration in which a microprocessor-based microcontroller would be
activated simply by holding it in the air.
Exploiting a range of electromagnetic bands increases the
dependability of energy scavenging devices, explained Tentzeris, who is
also a faculty researcher in the Georgia Electronic Design Center at
Georgia Tech. If one frequency range fades temporarily due to usage
variations, the system can still exploit other frequencies.
The scavenging device could be used by itself or in tandem with other
generating technologies. For example, scavenged energy could assist a
solar element to charge a battery during the day. At night, when solar
cells don't provide power, scavenged energy would continue to increase
the battery charge or would prevent discharging.
Utilizing ambient electromagnetic energy could also provide a form of
system backup. If a battery or a solar-collector/battery package failed
completely, scavenged energy could allow the system to transmit a
wireless distress signal while also potentially maintaining critical
functionalities.
The researchers are utilizing inkjet technology to print these energy
scavenging devices on paper or flexible paper-like polymers -- a
technique they already using to produce sensors and antennas. The result
would be paper-based wireless sensors that are self powered, low cost
and able to function independently almost anywhere.
To print electrical components and circuits, the Georgia Tech
researchers use a standard materials inkjet printer. However, they add
what Tentzeris calls "a unique in house recipe" containing silver
nanoparticles and/or other nanoparticles in an emulsion. This approach
enables the team to print not only RF components and circuits, but also
novel sensing devices based on such nanomaterials as carbon nanotubes.
When Tentzeris and his research group began inkjet printing of
antennas in 2006, the paper-based circuits only functioned at
frequencies of 100 or 200 MHz, recalled Rushi Vyas, a graduate student
who is working with Tentzeris and graduate student Vasileios Lakafosis
on several projects.
"We can now print circuits that are capable of functioning at up to
15 GHz -- 60 GHz if we print on a polymer," Vyas said. "So we have seen a
frequency operation improvement of two orders of magnitude."
The researchers believe that self-powered, wireless paper-based
sensors will soon be widely available at very low cost. The resulting
proliferation of autonomous, inexpensive sensors could be used for
applications that include:
- Airport security: Airports have both multiple security concerns
and vast amounts of available ambient energy from radar and
communications sources. These dual factors make them a natural
environment for large numbers of wireless sensors capable of detecting
potential threats such as explosives or smuggled nuclear material.
- Energy savings: Self-powered wireless sensing devices placed
throughout a home could provide continuous monitoring of temperature and
humidity conditions, leading to highly significant savings on heating
and air conditioning costs. And unlike many of today's sensing devices,
environmentally friendly paper-based sensors would degrade quickly in
landfills.
- Structural integrity: Paper or polymer-based sensors could be
placed throughout various types of structures to monitor stress. Self
powered sensors on buildings, bridges or aircraft could quietly watch
for problems, perhaps for many years, and then transmit a signal when
they detected an unusual condition.
- Food and perishable material storage and quality monitoring:
Inexpensive sensors on foods could scan for chemicals that indicate
spoilage and send out an early warning if they encountered problems.
- Wearable bio-monitoring devices: This emerging wireless
technology could become widely used for autonomous observation of
patient medical issues.
/Science Daily/
|