Today.Az » Weird / Interesting » Evolution provides clue to blood clotting
21 July 2011 [19:20] - Today.Az
A simple cut to the skin unleashes a complex cascade of chemistry to stem the flow of blood. Now, scientists at Washington University School of Medicine in St. Louis have used evolutionary clues to reveal how a key clotting protein assembles. The finding sheds new light on common bleeding disorders.
The long tube-shaped protein with a vital role in blood clotting is
called von Willebrand Factor (VWF). Made in cells that form the inner
lining of blood vessels, VWF circulates in the blood seeking out sites
of injury. When it finds them, its helical tube unfurls to catch
platelets and form blood clots. Defects in VWF cause von Willebrand
Disease, the most common inherited bleeding disorder in humans.
"The challenge for the cell is how to build this massive protein
without clogging the machinery," says J. Evan Sadler, MD, PhD, professor
of medicine and senior author of the study published in July in the Journal of Biological Chemistry. "The cell has solved this problem by making the assembly of von Willebrand Factor dependent on its location in the cell."
And VWF knows its location in a cell because pH, a measure of how
acidic or basic a liquid is, varies from one cellular structure to the
next. On a scale of 0 to 14, pure water has a neutral pH of about 7;
human blood is slightly basic with a pH of 7.4.
In a cell, the building blocks of VWF form in an area with the same
pH as blood. Then these building blocks are shipped to an area that is
more acidic. Called the Golgi, this cellular compartment is known for
its role in packaging proteins and has a pH of about 6.2. In this acidic
environment, the building blocks of VWF are able to form long chains
and fold into its signature helical tubules. But how this assembly
process works has not been well understood.
From basic biophysics, Sadler and his colleagues knew that only one
amino acid in the long protein chain is likely to "sense" a pH change
from 7.4 to 6.2. Moving to an acidic environment, this amino acid,
histidine, gains a positive charge. The group suspected that this charge
may trigger the VWF building blocks to link together in a long chain.
But there are many histidines located throughout the chain. Like 26
letters of the alphabet form thousands of words, 20 essential amino
acids form all proteins in the body. To identify which histidines might
be guiding the amino acid chain to form the long VWF tubules, Sadler and
his team looked to evolution.
"If a particular histidine is important in this process, it should be
present in the same location across many species," Sadler says.
So Sadler's group, including the paper's first author, Luke T. Dang,
who was an undergraduate student when he did this work, gathered the DNA
sequences of VWF for humans, 19 other placental mammals, a marsupial,
two birds, a reptile, an amphibian and five fish. Dang is now a graduate
student at the University of Washington, Seattle.
"By lining up the sequences, we found a relatively small number of
histidines that are in the same place across species," Sadler says. "It
then becomes manageable to mutate them individually and see if that
prevents von Willebrand Factor from assembling."
Out of the many histidines in the amino acid sequence of VWF, they
found two that are important in sensing the pH change and guiding the
building blocks to form chains in an acidic environment. When Dang
replaced either of these histidines with an amino acid that provides no
positive charge, the chain did not form. But when Dang forced a positive
charge to always be present at these locations, the chain formed again.
"A positive charge at these positions is important for von Willebrand
Factor to assemble properly so it can perform its biological function,"
says Sadler, also a hematologist who specializes in treating patients
with blood clotting disorders. "Without VWF, you bleed."
According to Sadler, defects in VWF disproportionately affect women
because the protein is especially important for controlling bleeding
during menstruation and childbirth. Sadler says this work helps to
better understand the defects in pathways that cause von Willebrand
Disease and related conditions.
This work was supported by the National Institutes of Health (NIH)
and the American Heart Association Midwest Affiliate Postdoctoral
Fellowship Award. /Science Daily/
|