Today.Az » Weird / Interesting » Researchers identify seventh and eighth bases of DNA
22 July 2011 [20:30] - Today.Az
For decades, scientists have known that DNA consists of four basic units -- adenine, guanine, thymine and cytosine. Those four bases have been taught in science textbooks and have formed the basis of the growing knowledge regarding how genes code for life. Yet in recent history, scientists have expanded that list from four to six.
Now, with a finding published online in the July 21, 2011, issue of the journal Science, researchers from the UNC School of Medicine have discovered the seventh and eighth bases of DNA.
These last two bases -- called 5-formylcytosine and 5
carboxylcytosine -- are actually versions of cytosine that have been
modified by Tet proteins, molecular entities thought to play a role in
DNA demethylation and stem cell reprogramming.
Thus, the discovery could advance stem cell research by giving a
glimpse into the DNA changes -- such as the removal of chemical groups
through demethylation -- that could reprogram adult cells to make them
act like stem cells.
"Before we can grasp the magnitude of this discovery, we have to
figure out the function of these new bases," said senior study author Yi
Zhang, Ph.D., Kenan Distinguished Professor of biochemistry and
biophysics at UNC and an Investigator of the Howard Hughes Medical
Institute. "Because these bases represent an intermediate state in the
demethylation process, they could be important for cell fate
reprogramming and cancer, both of which involve DNA demethylation."
Much is known about the "fifth base," 5-methylcytosine, which arises
when a chemical tag or methyl group is tacked onto a cytosine. This
methylation is associated with gene silencing, as it causes the DNA's
double helix to fold even tighter upon itself.
Last year, Zhang's group reported that Tet proteins can convert 5
methylC (the fifth base) to 5 hydroxymethylC (the sixth base) in the
first of a four step reaction leading back to bare-boned cytosine. But
try as they might, the researchers could not continue the reaction on to
the seventh and eighth bases, called 5 formylC and 5 carboxyC.
The problem, they eventually found, was not that Tet wasn't taking
that second and third step, it was that their experimental assay wasn't
sensitive enough to detect it. Once they realized the limitations of the
assay, they redesigned it and were in fact able to detect the two
newest bases of DNA. The researchers then examined embryonic stem cells
as well as mouse organs and found that both bases can be detected in
genomic DNA.
The finding could have important implications for stem cell research,
as it could provide researchers with new tools to erase previous
methylation patterns to reprogram adult cells.
It could also inform cancer research, as it could give scientists the
opportunity to reactivate tumor suppressor genes that had been silenced
by DNA methylation.
The research was funded by the Howard Hughes Medical Institute and the National Institutes of Health.
Study co-authors from UNC include Shinsuke Ito, Ph.D.; Li Shen,
Ph.D.; Susan C. Wu, Ph.D.; Leonard B. Collins and James A. Swenberg,
Ph.D. /Science Daily/
|