Today.Az » Weird / Interesting » Ancient stars shed light on the prehistory of the Milky Way
17 November 2011 [09:30] - Today.Az
Some of Milky Way's 'stellar fossils' -- our galaxy's oldest stars -- contain abnormally large amounts of heavy elements like gold, platinum and uranium. Where these large amounts came from has been a mystery for researchers, since they are usually seen in much later generations of stars. Researchers at the Niels Bohr Institute have been studying these ancient stars for several years with ESO's giant telescopes in Chile in order to trace the origin of these heavy elements and with recent observations they have concluded how they could have been formed in the early history of the Milky Way.
The results are published in the Astrophysical Journal Letters.
Shortly after the Big Bang the universe was dominated by the
mysterious dark matter along with hydrogen and helium. As the dark
matter and gasses clumped together under their own gravity, they formed
the first stars.
In the scorching interior of these stars, hydrogen and helium melted
together and formed the first heavier elements like carbon, nitrogen and
oxygen, and after a 'short' while (a few hundred million years) all of
the known elements were in place. However, these early stars only
contained a thousandth of the heavy-elements seen in the Sun today.
Every time a massive star burns out and dies in a violent explosion
known as a supernova, it releases clouds of gas and newly formed
elements out into space, where the gas clouds contract again and finally
collapse and form new stars. In this way, the new generations of stars
become richer and richer in heavy elements.
Fossils from the galaxy's childhood
It is therefore surprising to find stars from the early universe that
are relatively rich in the very heaviest elements. But they exist and
even right in our own galaxy, the Milky Way.
"In the outer parts of the Milky Way there are old 'stellar fossils'
from our own galaxy's childhood. These old stars lie in a halo above and
below the galaxy's flat disc. In a small percentage- approx. 1-2
percent of these primitive stars, you find abnormal quantities of the
heaviest elements relative to iron and other 'normal' heavy elements,"
explains Terese Hansen, who is an astrophysicist in the research group
Astrophysics and Planetary Science at the Niels Bohr Institute at the
University of Copenhagen.
The research group at the Niels Bohr Institute had studied these
ancient stars with ESO's giant telescopes in Chile over several years.
To get a handle on the origin of the heavy elements, they followed 17 of
these 'abnormal' stars for another four years with the Nordic Optical
Telescope on La Palma.
Terese Hansen used her master's thesis to analyse the observations.
"After slaving away on these very difficult observations for a few years
I suddenly realised that three of the stars had clear orbital motions
that we could define, while the rest didn't budge out of place and this
was an important clue to explaining what kind of mechanism must have
created the elements in the stars," explains Terese Hansen, who
calculated the velocities along with researchers from the Niels Bohr
Institute and Michigan State University, USA.
Gold plated gas clouds
She explains that there are two theories that can explain the early
stars' overdose of heavy elements. One theory is that these stars are
all close binary star systems where one star has exploded as a
supernovae and has coated its companion star with a thin layer of
freshly made gold, platinum, uranium and so on.
The other theory is that early supernovae (exploding giant stars)
could shoot the heavy elements out in jets in different directions, so
these elements would be built into some of the diffuse gas clouds that
formed some of the stars we see today in the galaxy's halo.
"My observations of the motions of the stars showed that the great
majority of the 17 heavy-element rich stars are in fact single. Only
three (20 percent) belong to binary star systems -- this is completely
normal, 20 percent of all stars belong to binary star systems. So the
theory of the gold-plated neighbouring star cannot be the general
explanation. The reason why some of the old stars became abnormally rich
in heavy elements must therefore be that exploding supernovae sent jets
out into space. In the supernova explosion the heavy elements like
gold, platinum and uranium are formed and when the jets hit the
surrounding gas clouds, they will be enriched with the elements and form
stars that are incredibly rich in heavy elements," says Terese Hansen,
who immediately after her groundbreaking results was offered a PhD grant
by one of the leading European research groups in astrophysics at the
University of Heidelberg. /Science Daily/
|