Ending a half-century of geological speculation, scientists have finally seen the process that causes rocks to move atop Racetrack Playa, a desert lake bed in the mountains above Death Valley, California. Half-century mystery solved at lastResearchers watched a pond freeze atop the playa, then break apart into sheets of ice that — blown by wind — shoved rocks across the lake bed.
Until now, no one has been able to explain why hundreds of rocks scoot unseen across the playa surface, creating trails behind them like children dragging sticks through the mud.
“It’s a delight to be involved in sorting out this kind of public mystery,” says Richard Norris, an oceanographer at the Scripps Institution of Oceanography in La Jolla, California, who led the research with his cousin James Norris, an engineer at Interwoof in Santa Barbara, California. The work was published on August 27 in PLoS ONE.
Geologists previously speculated that some combination of wind, rain and ice would have a role. But few expected that the answer would involve ice as thin as windowpanes, pushed by light breezes rather than strong gales.
Visitors to Death Valley have to go out of their way to visit Racetrack Playa, which sits 1,130 meters above sea level and is a bumpy three-hour drive from the nearest town. The researchers began studying the region in 2011, setting up a weather station and time-lapse cameras and dropping off rocks loaded with Global Positioning System (GPS) trackers. The rocks were designed to start recording their position and speed as soon as something made them move.
Racetrack Playa rocks move rarely — “maybe a few minutes out of a million,” Lorenz says. And the two events the scientists saw, with thin ice panes shoving the stones across a wet playa, do not necessarily explain every instance of rocks moving there. “But this breaks the back of the problem scientifically,” Lorenz says. “It is ice shove.”
Solving the Racetrack Playa mystery is not exactly a major scientific breakthrough, Lorenz says, but the work does show the rare combination of conditions that allow rocks to move seemingly on their own. And ice shove can have notable effects — in 1952, it uprooted enough telephone poles at a lake in Nevada to break a transcontinental telephone line.
/AzerTAc/